Что таоке треугольник: Значение слова «треугольник»

Содержание

Значение слова «треугольник»

Лексическое значение: определение

Общий запас лексики (от греч. Lexikos) — это комплекс всех основных смысловых единиц одного языка. Лексическое значение слова раскрывает общепринятое представление о предмете, свойстве, действии, чувстве, абстрактном явлении, воздействии, событии и тому подобное. Иначе говоря, определяет, что обозначает данное понятие в массовом сознании. Как только неизвестное явление обретает ясность, конкретные признаки, либо возникает осознание объекта, люди присваивают ему название (звуко-буквенную оболочку), а точнее, лексическое значение. После этого оно попадает в словарь определений с трактовкой содержания.

Словари онлайн бесплатно — открывать для себя новое

Словечек и узкоспециализированных терминов в каждом языке так много, что знать все их интерпретации попросту нереально. В современном мире существует масса тематических справочников, энциклопедий, тезаурусов, глоссариев. Пробежимся по их разновидностям:

  • Толковые Найти значение слова вы сможете в толковом словаре русского языка. Каждая пояснительная «статья» толкователя трактует искомое понятие на родном языке, и рассматривает его употребление в контенте. (PS: Еще больше случаев словоупотребления, но без пояснений, вы прочитаете в Национальном корпусе русского языка. Это самая объемная база письменных и устных текстов родной речи.) Под авторством Даля В.И., Ожегова С.И., Ушакова Д.Н. выпущены наиболее известные в нашей стране тезаурусы с истолкованием семантики. Единственный их недостаток — издания старые, поэтому лексический состав не пополняется.
  • Энциклопедические В отличии от толковых, академические и энциклопедические онлайн-словари дают более полное, развернутое разъяснение смысла. Большие энциклопедические издания содержат информацию об исторических событиях, личностях, культурных аспектах, артефактах. Статьи энциклопедий повествуют о реалиях прошлого и расширяют кругозор. Они могут быть универсальными, либо тематичными, рассчитанными на конкретную аудиторию пользователей. К примеру, «Лексикон финансовых терминов», «Энциклопедия домоводства», «Философия. Энциклопедический глоссарий», «Энциклопедия моды и одежды», мультиязычная универсальная онлайн-энциклопедия «Википедия».
  • Отраслевые Эти глоссарии предназначены для специалистов конкретного профиля. Их цель объяснить профессиональные термины, толковое значение специфических понятий узкой сферы, отраслей науки, бизнеса, промышленности. Они издаются в формате словарика, терминологического справочника или научно-справочного пособия («Тезаурус по рекламе, маркетингу и PR», «Юридический справочник», «Терминология МЧС»).
  • Этимологические и заимствований Этимологический словарик — это лингвистическая энциклопедия. В нем вы прочитаете версии происхождения лексических значений, от чего образовалось слово (исконное, заимствованное), его морфемный состав, семасиология, время появления, исторические изменения, анализ. Лексикограф установит откуда лексика была заимствована, рассмотрит последующие семантические обогащения в группе родственных словоформ, а так же сферу функционирования. Даст варианты использования в разговоре. В качестве образца, этимологический и лексический разбор понятия «фамилия»: заимствованно из латинского (familia), где означало родовое гнездо, семью, домочадцев. С XVIII века используется в качестве второго личного имени (наследуемого). Входит в активный лексикон. Этимологический словарик также объясняет происхождение подтекста крылатых фраз, фразеологизмов. Давайте прокомментируем устойчивое выражение «подлинная правда». Оно трактуется как сущая правда, абсолютная истина. Не поверите, при этимологическом анализе выяснилось, эта идиома берет начало от способа средневековых пыток. Подсудимого били кнутом с завязанными на конце узлом, который назывался «линь». Под линью человек выдавал все начистоту, под-линную правду.
  • Глоссарии устаревшей лексики Чем отличаются архаизмы от историзмов? Какие-то предметы последовательно выпадают из обихода. А следом выходят из употребления лексические определения единиц. Словечки, которые описывают исчезнувшие из жизни явления и предметы, относят к историзмам. Примеры историзмов: камзол, мушкет, царь, хан, баклуши, политрук, приказчик, мошна, кокошник, халдей, волость и прочие. Узнать какое значение имеют слова, которые больше не употребляется в устной речи, вам удастся из сборников устаревших фраз. Архаизмамы — это словечки, которые сохранили суть, изменив терминологию: пиит — поэт, чело — лоб, целковый — рубль, заморский — иностранный, фортеция — крепость, земский — общегосударственный, цвибак — бисквитный коржик, печенье. Иначе говоря их заместили синонимы, более актуальные в современной действительности. В эту категорию попали старославянизмы — лексика из старославянского, близкая к русскому: град (старосл.) — город (рус.), чадо — дитя, врата — ворота, персты — пальцы, уста — губы, влачиться — волочить ноги. Архаизмы встречаются в обороте писателей, поэтов, в псевдоисторических и фэнтези фильмах.
  • Переводческие, иностранные Двуязычные словари для перевода текстов и слов с одного языка на другой. Англо-русский, испанский, немецкий, французский и прочие.
  • Фразеологический сборник Фразеологизмы — это лексически устойчивые обороты, с нечленимой структурой и определенным подтекстом. К ним относятся поговорки, пословицы, идиомы, крылатые выражения, афоризмы. Некоторые словосочетания перекочевали из легенд и мифов. Они придают литературному слогу художественную выразительность. Фразеологические обороты обычно употребляют в переносном смысле. Замена какого-либо компонента, перестановка или разрыв словосочетания приводят к речевой ошибке, нераспознанному подтексту фразы, искажению сути при переводе на другие языки. Найдите переносное значение подобных выражений в фразеологическом словарике. Примеры фразеологизмов: «На седьмом небе», «Комар носа не подточит», «Голубая кровь», «Адвокат Дьявола», «Сжечь мосты», «Секрет Полишинеля», «Как в воду глядел», «Пыль в глаза пускать», «Работать спустя рукава», «Дамоклов меч», «Дары данайцев», «Палка о двух концах», «Яблоко раздора», «Нагреть руки», «Сизифов труд», «Лезть на стенку», «Держать ухо востро», «Метать бисер перед свиньями», «С гулькин нос», «Стреляный воробей», «Авгиевы конюшни», «Калиф на час», «Ломать голову», «Души не чаять», «Ушами хлопать», «Ахиллесова пята», «Собаку съел», «Как с гуся вода», «Ухватиться за соломинку», «Строить воздушные замки», «Быть в тренде», «Жить как сыр в масле».
  • Определение неологизмов Языковые изменения стимулирует динамичная жизнь. Человечество стремятся к развитию, упрощению быта, инновациям, а это способствует появлению новых вещей, техники. Неологизмы — лексические выражения незнакомых предметов, новых реалий в жизни людей, появившихся понятий, явлений. К примеру, что означает «бариста» — это профессия кофевара; профессионала по приготовлению кофе, который разбирается в сортах кофейных зерен, умеет красиво оформить дымящиеся чашечки с напитком перед подачей клиенту. Каждое словцо когда-то было неологизмом, пока не стало общеупотребительным, и не вошло в активный словарный состав общелитературного языка. Многие из них исчезают, даже не попав в активное употребление. Неологизмы бывают словообразовательными, то есть абсолютно новообразованными (в том числе от англицизмов), и семантическими. К семантическим неологизмам относятся уже известные лексические понятия, наделенные свежим содержанием, например «пират» — не только морской корсар, но и нарушитель авторских прав, пользователь торрент-ресурсов.
    Вот лишь некоторые случаи словообразовательных неологизмов: лайфхак, мем, загуглить, флэшмоб, кастинг-директор, пре-продакшн, копирайтинг, френдить, пропиарить, манимейкер, скринить, фрилансинг, хедлайнер, блогер, дауншифтинг, фейковый, брендализм. Еще вариант, «копираст» — владелец контента или ярый сторонник интеллектуальных прав.
  • Прочие 177+ Кроме перечисленных, есть тезаурусы: лингвистические, по различным областям языкознания; диалектные; лингвострановедческие; грамматические; лингвистических терминов; эпонимов; расшифровки сокращений; лексикон туриста; сленга. Школьникам пригодятся лексические словарники с синонимами, антонимами, омонимами, паронимами и учебные: орфографический, по пунктуации, словообразовательный, морфемный. Орфоэпический справочник для постановки ударений и правильного литературного произношения (фонетика). В топонимических словарях-справочниках содержатся географические сведения по регионам и названия. В антропонимических — данные о собственных именах, фамилиях, прозвищах.

Толкование слов онлайн: кратчайший путь к знаниям

Проще изъясняться, конкретно и более ёмко выражать мысли, оживить свою речь, — все это осуществимо с расширенным словарным запасом. С помощью ресурса How to all вы определите значение слов онлайн, подберете родственные синонимы и пополните свою лексику. Последний пункт легко восполнить чтением художественной литературы. Вы станете более эрудированным интересным собеседником и поддержите разговор на разнообразные темы. Литераторам и писателям для разогрева внутреннего генератора идей полезно будет узнать, что означают слова, предположим, эпохи Средневековья или из философского глоссария.

Глобализация берет свое. Это сказывается на письменной речи. Стало модным смешанное написание кириллицей и латиницей, без транслитерации: SPA-салон, fashion-индустрия, GPS-навигатор, Hi-Fi или High End акустика, Hi-Tech электроника. Чтобы корректно интерпретировать содержание слов-гибридов, переключайтесь между языковыми раскладками клавиатуры. Пусть ваша речь ломает стереотипы. Тексты волнуют чувства, проливаются эликсиром на душу и не имеют срока давности. Удачи в творческих экспериментах!

Проект how-to-all.com развивается и пополняется современными словарями с лексикой реального времени. Следите за обновлениями. Этот сайт помогает говорить и писать по-русски правильно. Расскажите о нас всем, кто учится в универе, школе, готовится к сдаче ЕГЭ, пишет тексты, изучает русский язык.

"Треугольник Карпмана" в психологии: что это такое?

Приветствую Вас, друзья!

Наверняка вы замечали, что некоторые люди постоянно жалуются и обвиняют окружающих в своих неприятностях, но не прикладывают даже малейших усилий, чтобы улучшить собственную жизнь. Другие всегда уверены в своей правоте и стремятся подавить каждого, кто слабее. Есть и такие, кто всегда показательно спешит на помощь, обещая решить все проблемы (особенно когда в помощи никто не нуждается).

Треугольник Карпмана – это психологическая модель, объясняющая поведение перечисленных типажей. Она простая и достаточно наглядно описывает взаимоотношения между людьми. Согласно данной модели, любые отношения подразумевают зависимость и манипуляции. При этом каждый участник таких отношений, чтобы манипулировать другими, занимает одну из 3 психологических ролей. В этой статье мы более подробно разберём, что такое треугольник Карпмана, как он влияет на отношения и как из него выбраться.

Что такое треугольник Карпмана?

Данную модель предложил американский психолог Стивен Карпман в 1968 году, обобщив некоторые идеи своего наставника Эрика Берна. Она получилась достаточно точной и удачной, поэтому сегодня активно применяется в психологии и психотерапии. Модель выделяет три типа поведения:

1. Жертва. Это «страдающая» сторона. В общении Жертва делает акцент на своих неудачах, подробно объясняя, кто и почему в них виноват.

2. Агрессор (Преследователь). Этот участник считает, что всегда прав, поэтому старательно навязывает свою «правоту». Любое несогласие вызывает у него агрессивную реакцию.

3. Спасатель (Спаситель). Этот участник старательно изображает понимание и сопереживание, всегда занимает сторону Жертвы, поддерживает её и постоянно обещает помочь. Если помогает, то старается максимально «прорекламировать» свою доброту.

Треугольник Карпмана – это своего рода игра, в которой у каждого имеется собственная роль. Между Жертвой и Агрессором завязывается конфликт, Спаситель занимает сторону Жертвы. Иногда подобные отношения могут длиться много лет, но бывает и так, что участники треугольника меняются ролями. Вчерашняя Жертва может превратиться в Агрессора, а Агрессор – в Спасателя.

Роли в треугольнике Карпмана

Важно учитывать, что человек выбирает подходящую ему роль в модели Карпмана добровольно, чтобы использовать её для манипулирования, а также создания и поддержания зависимости. Жертве нужен Агрессор, чтобы оправдывать собственные неудачи. Например, муж может утверждать, что мало зарабатывает, потому что жена постоянно «пилит» его. Роль Спасателя в данной ситуации достаётся друзьям мужа-жертвы, с которыми можно за пивом обсудить коварство и прочие недостатки своих жён. Давайте рассмотрим каждую из ролей более подробно.

Жертва

Эта роль является ключевой для всей модели, именно на ней строится концепция драматического треугольника. Жертва стремится вызвать сочувствие, чтобы Агрессор осознал, какой он нехороший, а Спасатель быстрее пришёл на помощь. При этом она провоцирует Агрессора, а когда добивается своего, демонстративно страдает, чтобы вызвать сочувствие и получить компенсацию за страдания.

Иногда Жертва ведёт себя агрессивно, превращаясь в Преследователя, но сохраняя при этом образ жертвы. Важно учитывать, что несмотря на наличие достаточно точных описаний каждой роли, в реальных отношениях они редко встречаются в чистом виде. К примеру, распространены отношения, в которых каждый участник совмещает роли Жертвы и Агрессора, периодически превращаясь в Спасателя.

Преследователь

Данная роль подразумевает жестокое, агрессивное и тираническое поведение. Преследователь стремится к господству над Жертвой. Он считается себя самым мудрым и абсолютно уверен в своей непогрешимости. Его раздражает, когда окружающие поступают не так, как он считает нужным.

Агрессор всегда находит логичные причины и оправдания для своих нападок на Жертву, а любые попытки «самообороны» только усиливают уровень его агрессии. Но если Жертве удаётся убедить Преследователя, что он был неправ, его самоуверенность слабеет, и они могут поменяться ролями.

Спасатель

Это достаточно сложный типаж. У него присутствует склонность к агрессии, но сам он считает себя положительным героем, поэтому не может позволить себе подобное поведение. Его агрессия должна быть «праведной». Эту потребность он может реализовать, поддерживая Жертву.

Помощь Спасателя обычно не подразумевает сложных телодвижений. Обычно он помогает, поддерживая Жертву на словах, соглашаясь с тем, что Преследователь поступает некрасиво, да и обстоятельства несправедливы по отношению к Жертве. Прикрываясь благими намерениями, Спасатель начинает вести себя враждебно по отношению к Преследователю, но не особо это афиширует.

Пример треугольника Карпмана

Семейные отношения – это первая ситуация, которая напрашивается в качестве примера. Заключая брак, люди становятся взаимно зависимыми, поэтому невольно примеряют на себя одну из описанных выше ролей. Давайте подробнее рассмотрим типовую ситуацию, и выясним, как определенные аспекты поведения объясняются моделью Карпмана.

Итак, представим семью, в которой муж не особо успешен в профессиональном плане. Он, конечно, работал бы старательнее, если бы была хорошая работа. Но поскольку хорошей работы нет, то он и не старается. Его жизненная позиция строится на убеждении, что жизнь изначально была к нему несправедлива. Он родился и вырос в бедной семье, не смог из-за этого получить хорошего образования, а на нормальную работу без «блата» в наше время вообще не устроишься.

Жена в такой семье обычно играет роль Преследователя. Она «пилит» мужа, чтобы тот предпринимал более активные действия для улучшения материального положения семьи.

Роль Спасителя могут взять на себя друзья, которые обычно находятся на той же ступеньке социальной лестницы и полностью разделяют его убеждения о глобальной несправедливости. Также Спасителем может выступать мать мужа, которая уверена, что её ненаглядный сыночек мог бы выбрать для неё невестку и получше.

Как видите, треугольник Карпмана – это модель, которой можно описать практически любые отношения, подразумевающие зависимость одного человека от другого. Подобные отношения могут продолжаться годами и десятилетиями. При этом роли могут меняться. Так жена может стать Спасителем для мужа, когда на того нападает другой Преследователь (начальник на работе или сосед, с которым приключился конфликт).

Как выйти из треугольника Карпмана?

Характерная особенность отношений, описываемых данной моделью, заключается в том, что каждый участник стремится продолжать их и сохранять за собой свою роль. Драматический треугольник затягивает, и с каждым днём выбраться из него всё сложнее, поскольку человеку комфортно быть в привычной роли.

И всё продолжается по кругу: Жертва изображает страдания, не будучи такой уж беспомощной, Агрессор предъявляет вымышленные претензии, а Спасатель помогает, не помогая. К счастью, из этой игры можно выйти, и сделать это не так сложно. Рассмотрим способы выхода для каждой из ролей.

Советы для Жертвы

1. Улучшайте свою жизнь всеми доступными способами. Избавляйтесь от лишних поводов для расстройств и повышайте свою самооценку.

2. Прекратите винить во всём обстоятельства или других людей и примите полную ответственность за свою жизнь на себя.

3. Помните, что «халявы» не существует. Всё, что вы получаете, вы должны заработать, заслужить или оплатить.

4. Избавьтесь от привычки оправдываться в ситуациях, когда это не требуется.

5. Если рядом есть Спасатель, постарайтесь получать от него максимально конструктивную поддержку и не сталкивайте его с Преследователем.

Советы для Спасателя

1. Не вмешивайтесь, если вас не просят.

2. Не думайте, что все вокруг плохие, и только вы – Д’Артаньян.

3. Не давайте больше обещаний, чем можете сдержать.

4. Совершайте хорошие поступки ради поступков, а не ради благодарности.

5. Если вы помогаете кому-то, рассчитывая на ответную услугу, прямо говорите человеку об этом.

6. Найдите возможность приносить пользу, не вмешиваясь в чужие жизни.

7. Помогайте только тогда, когда это необходимо.

Советы для Преследователя

1. Если злитесь на кого-то, сначала подумайте, действительно ли человек поступил настолько неправильно. Хотел ли он разозлить вас? Знал ли он, что вы не одобрите этот поступок?

2. Помните, что все люди ошибаются. И в большинстве случаев неправ тот, кто злится. Прежде чем предъявлять кому-то претензии, подумайте, уверены ли вы в собственной правоте.

3. Научитесь всегда искать причины неудач в собственных поступках.

4. Старайтесь чаще прислушиваться к мнению окружающих – это улучшает взаимопонимание.

5. Найдите увлечение, которое позволит направить энергию в конструктивное русло.

6. Попробуйте влиять на близких людей при помощи разных мотивирующих методов, а не через агрессию.

Заключение

Треугольник Карпмана – это модель, описывающая психологию межличностных отношений в весьма неприглядном виде. Люди в ней стремятся манипулировать друг другом, превращая отношения в тягостную взаимную зависимость. Подобное поведение свойственно всем людям, но в гармоничных отношениях оно практически не просматривается. Поэтому, если вы заметили, что в вашей жизни присутствует подобный драматический треугольник, необходимо срочно искать решение. А каким оно будет, зависит только от вас и вашего желания сохранить отношения.

Что такое рабочий треугольник на кухне и как его правильно организовать — Roomble.com

— Особенно внимательно надо отнестись к правилу треугольника, если на кухне готовят одновременно два человека. Траектории их движения при неправильно выстроенной схеме будут пересекаться, что не только неудобно, но даже опасно (например, если кто-то двигается по кухне с горячей кастрюлей).

Идеально, если треугольник будет равнобедренным. Однако это не всегда возможно. В небольших кухнях часто используется линейная планировка, и тогда треугольник превращается в одну линию. В случае маленькой кухни важно обеспечить наличие хотя бы небольших рабочих поверхностей между зонами, иначе готовить, разбирать продукты и посуду будет неудобно, а срок службы кухонной техники сократится. Если площадь позволяет разместить посудомоечную машину, убедитесь, что она находится рядом с мойкой, иначе процесс загрузки посуды усложнится.

Линейную планировку не стоит использовать на больших площадях, так как интервалы между зонами будут слишком длинными. В кухнях средних размеров часто применяется г-образная планировка. Чаще всего в углу располагают мойку, а по двум стенам — зоны готовки и хранения, в результате чего образуется правильный треугольник.

Иногда применяют параллельную планировку: по одной стене располагают мойку и плиту, а напротив — зоны хранения. В этом случае нужно учитывать ширину прохода между двумя рядами кухонной мебели. Если он слишком велик (более двух метров) или если в центре помещения находится обеденный стол, то готовить будет неудобно.

Вариацией параллельной планировки может быть кухня с островом, но она требует большей площади. Для удобства использования острова вокруг него должно быть свободное пространство с минимальным радиусом 1,2 метра.

Я предпочитаю зоны мойки и готовки располагать рядом, а не напротив, чтобы хозяйке не приходилось пересекать проход между ними с горячими кастрюлями и мокрыми предметами. Если остров довольно велик, в него можно встроить и плиту, и мойку. В противном случае его лучше использовать для хранения или предусмотреть там посадочные места, а основной фронт кухни построить по принципу линейной или угловой планировки, в зависимости от конфигурации помещения.

ТАЙНЫ И ЗАГАДКИ ТРЕУГОЛЬНИКА

ТАЙНЫ И ЗАГАДКИ ТРЕУГОЛЬНИКА

Климешина Е.Ю. 1

1МБОУ СОШ №35 г. Астрахани

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Содержание

Введение

  1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

  1.  
    1. Что такое треугольник?

    2. Треугольник в истории геометрии

    3. Почему у треугольника три стороны?

    4. Жестко ли спать на треугольнике?

  1.  
    1. Треугольники в архитектуре

    2. Треугольник Паскаля

    3. Треугольник Рёло

  1.  
    1. Бермудский треугольник

  1. ПРАКТИЧЕСКАЯ ЧАСТЬ

    1. Анкетирование

    2. Результаты анкетирования

    3. Разнообразный мир треугольников или где в жизни встречается треугольник.

Вывод

Приложение

Список литературы

Введение

Геометрия – наука, занимающаяся изучением геометрических фигур. Одной из основных фигур, которую изучают в геометрии является - треугольник. Треугольник является важнейшей фигурой планиметрии, и потому в первую очередь изучают многочисленные свойства этой фигуры. Также треугольник является составной частью объемных фигур, а его свойства мы часто используем при решении различных задач. В жизни форма этой фигуры используется во многих областях. А также имеет свои тайны. (Бермудский треугольник, Египетские пирамиды)

Цели проекта:

  1. Изучить понятие треугольника и его элементов и свойств.

  2. Развить логическое мышление учащихся. Сформировать познавательный интерес к изучению геометрии.

  3. Научиться устанавливать межпредметные связи математики с такими учебными предметами как история, литература, информатика, черчение.

  4. Выяснить, что значит математика в жизни людей: является второстепенной наукой или математика – это неотъемлемая часть в жизни человечества.

Задачи проекта:

  1. Изучить свойства треугольника;

  2. Научиться устанавливать связи между различными геометрическими фигурами;

  3. Развить пространственное и логическое мышление;

  4. Рассмотреть взаимосвязь между математикой и жизнью;

  5. Проанализировать, как жизнь зависит от математики;

Гипотеза:

  1. Можно ли обойтись без треугольника в жизни и в математике?

  2. Если математика – второстепенная наука, то законы, которые она изучает знать простому человеку совсем не обязательно, то есть эти законы в обыденной жизни никому не нужны.

  1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    1. Что такое треугольник?

Ты на меня, ты на него, На всех нас посмотри. У нас всего, у нас всего У нас всего по три. Три стороны и три угла, И столько же вершин. И трижды трудные дела Мы трижды совершим

Лев Шеврин

Треугольник (в евклидовом пространстве) — это геометрическая фигура, которая образована тремя отрезками, соединяющие три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Стороны треугольника образуют в вершинах треугольника три угла. Другими словами, треугольник — это многоугольник, у которого имеется ровно три угла. Если три точки лежат на одной прямой, то «треугольник» с вершинами в трёх данных точках называется вырожденным. Все остальные треугольники невырожденные.

В неевклидовых пространствах в качестве сторон треугольника выступают геодезические линии, которые, как правило, являются криволинейными. Поэтому такие треугольники называют криволинейными.

Важным частным случаем неевклидовых треугольников являются сферические треугольники.

Треугольник — это часть плоскости, ограниченная минимально возможным количеством сторон. Любой многоугольник можно точно разбить на треугольники, лишь связав его вершины отрезками, не пересекающими его стороны. С некоторым приближением, на треугольники можно разбить поверхность любой формы, как на плоскости, так и в пространстве. Так как треугольник — это многоугольник, ограниченный минимально возможным количеством сторон, то при его разбиении на треугольники процесс решений задач будет намного легче чем решения огромным многоугольников. Разбиение геометрического объекта (в данном случае это разбиение на треугольники) называется триангуляция.[1]

  1.  
    1. Треугольник в истории геометрии.

Треугольник – это простейшая плоская фигура, но можно сказать, что вся (или почти вся) геометрия со времен «Начал» Евклида покоится на «трёх китах» – трёх признаках равенства треугольников.

За несколько тысячелетий геометры столь подробно изучили треугольник, что иногда говорят о «геометрии треугольника» как о самостоятельном разделе элементарной геометрии.

Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.

1.3.Почему у треугольника три стороны?

Мы знакомы с разными многоугольниками: треугольник, четырехугольник, пятиугольник и т.д. Почему же именно треугольник считают символом геометрии?

Оказывается, потому, что треугольник – это многоугольник с наименьшим количеством сторон. Действительно, попробуйте построить многоугольник с двумя сторонами и у вас ничего не получится, ведь для того чтобы получился многоугольник нужна третья сторона.[5]

  1.  
    1. Жестко ли спать на треугольнике?

Вот такой шуточный вопрос возникает тогда, когда мы знакомимся с таким понятием, как жесткость треугольника.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Из третьего признака равенства треугольников следует, что треугольник - жёсткая фигура. Поясню, что это означает. Представим себе две рейки, у которых два конца скреплены гвоздем. Такая конструкция не является жёсткой: сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмем ещё одну рейку и скрепим её концы со свободными концами первых двух реек. Полученная конструкция - треугольник - будет уже жёсткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т. е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, так как новый треугольник должен быть равен исходному по третьему признаку равенства треугольников.

Рассмотрим модели двух фигур - треугольника и четырёхугольника и выясним, можно ли, не меняя длины сторон, изменить форму фигуры? Под действием небольшой силы четырёхугольник изменил свою форму, а треугольник нет.

Можно сказать, что треугольник – не изменяющаяся фигура. В нем нельзя сдвинуть или раздвинуть никакие две стороны, в отличие от любого другого многоугольника. В треугольнике нельзя изменить ни один из углов. Таким образом, треугольник – жесткая фигура.[6]

Великий ученый Фалес Милетский основал одну из прекраснейших наук – геометрию. Он имел титул одного из семи мудрецов Греции, он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции VI век до нашей эры

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе, появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.[2]

1.4. Треугольники в архитектуре

Треугольники повсюду встречаются в нашей жизни: в костюмах, в бытовых приборах, а также в архитектуре.

Треугольник Пенроуза — одна из основных невозможных фигур, известная также под названиями невозможный треугольник и трибар.

Был открыт в 1934 году шведским художником Оскаром Реутерсвардом, который изобразил его в виде набора кубиков. В 1980 году этот вариант невозможного треугольника был напечатан на шведских почтовых марках.

Широкую известность эта фигура обрела после опубликования статьи о невозможных фигурах в Британском журнале психологии английским математиком Роджером Пенроузом в 1958 году. В этой статье невозможный треугольник был изображен в наиболее общей форме — в виде трёх балок, соединённых друг с другом под прямыми углами. Под влиянием этой статьи в 1961 голландский художник Мауриц Эшер создал одну из своих знаменитых литографий «Водопад».[7]

13-метровая скульптура невозможного треугольника из алюминия была воздвигнута в 1999 году в городе Перт (Австралия)

1.5. Треугольник Паскаля

Самой известной математической работой Блеза Паскаля является трактат об "арифметическом треугольнике", образованном биномиальными коэффициентами (треугольник Паскаля), который имеет применение в теории вероятностей и обладает удивительными и занимательными свойствами.

В действительности, треугольник Паскаля был известен задолго до 1653 года - даты выхода "Трактата об арифметическом треугольнике". Так, этот треугольник воспроизведен на титульном листе учебника арифметики, написанном в начале XVI Петром Апианом, астрономом из Ингольтштадского университета. Изображен треугольник и на иллюстрации в книге одного китайского математика, выпущенной в 1303 году. Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.

Мартин Гарднер пишет в книге "Математические новеллы" (М., Мир, 1974): "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике".[9]

1.7. Треугольник Рёло

Треугольник Рёло – это область пересечения трех окружностей, построенных из вершин правильного треугольника. Они имеют радиус, равный стороне этого же треугольника. Он относится к разряду простых фигур (как круг), обладающих постоянной шириной. То есть если к нему провести две параллельные опорные прямые, то независимо от выбранного направления, расстояние между ними будет неизменным, в любой точке независимо от их длины.

По мнению историков, название это «непростой» простой фигуре дал немецкий механик Франц Рёло, живший с 1829 по 1905 годы. Многие историки сходятся в том, что именно он стал первооткрывателем свойств этой геометрической фигуры. Потому как он первый широко использовал свойства и возможности треугольника Рёло в своих механизмах.

Франц Рёло первым дал доскональные определения понятиям «кинетическая пара», «кинетическая цепь». Он впервые показал возможность связи между основами механики и конструирования. То есть связал теорию и практические проблемы конструирования. Что позволило создавать механизмы в совокупности их функциональных возможностей с внешней привлекательностью/эстетичностью. Отсюда Рёло стали считать поэтом механики. Что позволило последователям в корне пересмотреть имеющиеся в ней теории.

Иные исследователи первооткрывателем этой фигуры признают Леонарда Эйлер (18 век), который уже тогда продемонстрировал возможность его создания ее из трех окружностей.

А третьи «увидели» треугольник Рёло в рукописях гениального Леонардо Да Винчи. Манускрипты этого естествоиспытателя, с изображением этой «простой» фигуры, хранятся в Мадридском кодексе и в Институте Франции.

Но кто бы ни был первооткрывателем этот «не простой» треугольник получил широкое распространение в современном мире. А именно:

• Сверло Уаттса. В 1914 году Гарри Джеймс Уаттс изобрел уникальный инструмент для высверливания квадратных отверстий. Это сверло, выполнено в форме Треугольника Рёло;

• Двигатель Ванкеля. С 1957 года треугольник Рёло немецкий изобретатель Ванкель Ф. создал уникальный механизм. Где внутри камеры, цилиндрической формы, по сложной траектории передвигается ротор-поршень. Созданный в форме треугольника Рёло. При его постоянном движении, каждая его грань, контактируя со стенками камеры, образует сразу три камеры, названные позже «камерами сгорания».

• Грейферный механизм кинопроекторов. Треугольник Рёло, вписанный в квадрат и двойной параллелограмм лежат в его основе. А нужен он для равномерного продергивания кинопленки во время киносеанса со скоростью в 18 кадров/с без отклонений и задержек;

• в архитектуре. Конструкция из двух дуг треугольника Рёло образует стрельчатую арку готического стиля. А окна в форме Рёло стоят в Брюгге в церкви Богоматери. Как орнамент он присутствует и на оконных решетках швейцарской коммуны Отрив и цистерцианского аббатства.

Следовательно, изобретенный в прошлом веке треугольник Рёло широко используется сегодня. Однако его изучение не стоит на месте. Его свойства, как характеристики простой фигуры, находится в постоянном теоретическом и практическом изучении.[10]

1.8. Бермудский треугольник Бермудский треугольник – одно из самых мистических мест на нашей планете, изучить природу которого до сих пор не удалось человеку.

Это загадочное место находится в Атлантическом океане, между тремя географическими точками: Пуэрто-Рико, Флоридой и Бермудскими островами. Эти точки образуют геометрические «вершины» Бермудского треугольника.

Уже много лет, а точнее - с 1945 года, это «дьявольское морское место» считается очень опасным для мореплавателей. Здесь происходило множество необъяснимых явлений. Дрейфующие суда с мертвыми экипажами, бесследные исчезновения самолетов и морских судов, выход из строя навигационных приборов, датчиков, радиопередатчиков, часов – вот неполный список того, чем прославился на весь мир этот морской треугольник.

Многие ученые, астрономы, физики, математики, географы, и даже военные службы пытались разгадать мистику загадочных явлений, однако эти исследования не стали успешными. На сегодняшний день человеческий мир владеет только обыкновенными догадками, которые не дают однозначного ответа – что это за странное географическое место, что видят люди, попадая туда, куда пропадают исчезнувшие корабли и самолеты.

Вот такая вот странная загадка этого места с условными границами простой геометрической фигуры. Загадка, которую вряд ли когда-нибудь удастся решить.[12]

  1. ПРАКТИЧЕСКАЯ ЧАСТЬ

    1. Анкетирование

Анкетирование – это метод эмпирического исследования, основанный на опросе значительного числа респондентов и используемый для получения информации о типичности тех или иных психолого-педагогических явлений. Этот метод дает возможность установить общие взгляды, мнения людей по тем или иным вопросам; выявить мотивацию их деятельности, систему отношений.[14]

Вопросы:

  1. Какие треугольники бывают?

  2. Какими свойствами обладают треугольники?

  3. Нужны ли треугольники в жизни людей?

  4. Знаете ли вы почему Бермудский треугольник назван треугольником?

А хотели бы узнать?

Вопросы

Варианты ответов

Какие треугольники бывают?

Равнобед-ренные

Равносторон-

ние

Прямоуголь-

ные

Односторон-

ние

Раз-

ные

 

16 чел.

3 чел.

7 чел.

2 чел.

2 чел.

Какими

свойствами

обладают

треугольники?

Равные

стороны

Равные углы

Подобие треугольников

Многими

свойствами

Нез-

наю

7 чел.

5 чел.

2 чел.

1 чел.

8 чел.

Нужны ли

треугольники

в жизни людей?

Да

Нет

11 чел.

7 чел.

Знаете ли вы

почему

Бермудский

треуголь-

ник назван

треуголь-

ником? Хотели бы

узнать?

Да, я знаю

Нет, хотела

бы узнать

Нет, не хочу

знать

Знаю, хочу узнать

больше

7 чел.

5 чел.

5 чел.

1 чел.

     
  1.  
    1. Результаты анкетирования

Вывод: 53% класса ответили равнобедренные треугольники, 23% - прямоугольные, 10% - равносторонние и по 7% ответили, что бывают односторонние и разные треугольники.

Вывод: 35% учеников не знают свойства треугольников, 30% ответили равные стороны, 22%-равные углы, 9% ответили многими свойствами и 4% вспомнили про подобие треугольников.

Вывод: 61 % учащихся считают, что треугольники нужны, а остальные 39% считают, что не нужны.

  1.  
    1. Разнообразный мир треугольников или где в жизни встречается треугольник?

Треугольник самая распространенная фигура. В лесу, когда мы смотрим на ель и ее тень, то перед нами представляется равнобедренный треугольник.

  1. На магических символах

  2. Предметы обихода: треуголки, вырезы на одежде.

  3. Музыкальные инструменты

Треуго́льник (итал. triangolo, англ. и фр. triangle, нем. Triangel) — ударный музыкальный инструмент в виде металлического прута (обычно из стали или алюминия), изогнутого в форме треугольника. Один из углов оставлен открытым (концы прута почти касаются).[15]

В повседневной жизни треугольник чаще всего встречается на дорожных знаках.

Заключение

Все вышеизложенные гипотезы из-за отсутствия точно выстроенной научной основы не могут быть приняты за теорию, объясняющую аномалию Бермудского треугольника. Однако в науке было так не один раз: сегодня это не воспринимается нашим разумом, а завтра уже всё принимается как новая теория.

Выявить суть загадочных катастроф, происходящих в печально известном районе Атлантического океана, пролить свет на таинство там происходящего, столько времени, волнующего умы людей, поможет только дальнейшие научные исследования и наблюдения в этих регионах, как и развитие науки в целом.[16]

Вывод

Треугольник – самая простая замкнутая прямолинейная фигура, одна из первых, свойства которых человек узнал еще в глубокой древности, поэтому эта фигура всегда имела широкое применения в практической жизни.

И даже сейчас мы встречаем треугольники по всюду: в архитектуре, в музыке и даже в медицине. Треугольник – распространённая фигура, также с ним связаны загадки и тайны природы.

Без треугольников и в жизни, и в математике просто не обойтись.

Это настолько необъятная тема, что чем больше я в нее погружаюсь, тем больше утопаю как в Бермудском треугольнике.

Список литературы:

  1. Энциклопедия для детей. Т. 11. Математика/Главный редактор Э68 М.Д. Аксёнова. – М.: Аванта+, 1998.

  2. Я познаю мир: Детская энциклопедия: Математика/Сост. А. П. Савин, В. В. Станцо, А. Ю. Котова: Под общ. ред. О. Г. Хинн; Худож. А. В. Кардашук, А. Е. Шабельник, А. О. Хоменко. – М.: АСТ, 1995.

  3. И. Н. Бронштейн и К. А. Семендяев, Справочник по математике.1965г.

  4. Шарыгин И. Ф., Ерганжиева Л.Н. Наглядная геометрия: Учебное пособие для учащихся 5 – 6 классов. – М.: МИРОСЭ, 1995.

Просмотров работы: 7336

Родинки в виде треугольника значение, три родинки что означают на лице, теле

Расположение родинок на теле взрослого человека или ребенка в виде геометрических фигур, которые присутствуют с рождения или образовались в период гормонального всплеска, несут в себе определенный смысл. Родинки в форме треугольника – распространенное явление. Условием для толкования фигуры из невусов на теле является одинаковая форма, цвет и структура. Если треугольник из родинок на лице, спине или животе содержит невус, который отличается по цвету от двух других пятен, судьбоносного смысла фигура не несет.

Что означает комбинация родинок в виде треугольника

Согласно морфоскопии (науке, занимающейся расшифровкой знаков, которые расположены на теле), тело разделено на два участка: благоприятный и неблагоприятный. Для правильного определения необходимой половины следует визуально нарисовать точку на лбу и провести вниз линию. Женщины и мужчины обладают противоположными участками. У мужчин правая сторона от визуальной линии является благоприятной. Родинки треугольником, расположенные на правом участке, несут позитивное значение для своего обладателя. Невусы геометрической формы, вершина которых направлена вниз, обозначает приобретение жизненно важного опыта. Благоприятная сторона свидетельствует о положительном исходе полученных знаний.

Если верхушка треугольника расположена вверху, ожидается неудача и потеря. Если треугольник смотрит влево, вправо, это говорит о том, что владелец фигуры из родинок зависит от другого человека. Человек не замечает того, что его мыслями кто-то управляет, его действия зависят от решений посторонней личности.

Значение трех родинок в виде треугольника у мужчины в верхней половине туловища трактуется следующим образом:

  • Обладает мощной энергетической силой.
  • Геометрическая фигура оказывает влияние на ту часть тела, на которой расположена.
  • Человек способен контактировать с другим миром. Среди носителей родинок треугольником встречаются предсказатели, экстрасенсы и гадалки.
  • Имеют способности, недоступные для простого человека.
  • Невус треугольником, расположенный на ладони или руке мужчины свидетельствует о коммуникабельности. Он легко находит с людьми общий язык, заводит новые знакомства.
  • Если расположены у мужчины на голове родинки в виде треугольника, значение имеют для умственных способностей. Достигают успеха в области науки, исследований.

Женщина, которая обладает треугольником из невусов, отличается сильным характером, придерживается собственных моральных принципов, которым следует всю жизнь. Не видит необходимости говорить то, чего не смогут выполнить. Представительницы прекрасного пола отличаются привлекательной внешностью, пользуются повышенным вниманием у мужчин. Найти спутника жизни удается не сразу. Выбирают в супруги сильного характером и энергетикой человека.

Треугольная форма из родинок у женщины свидетельствует о ее равнодушии к мнению окружающих. Такой тип натуры относится к эгоистичному. Характер с такой чертой может принести успех или неудачу. Предпочитают добиваться высот в профессиональной деятельности, быстро поднимаются по карьерной лестнице, невзирая на трудности и неприятности. Что касается материнского фактора, женщины по-другому ведут себя в кругу семьи. Это справедливые и любящие матеря, верные и заботливые жены. Стремятся сохранить брак с одним партнером на долгие годы.

Значения на разных частях тела

Что означает треугольник из родинок можно определить, исходя из локализации фигуры. Если расположено на шее или подбородке, это говорит о том, что человек получает удовольствие от выполняемой работы, достигает высоких должностей за короткий промежуток времени. Профессиональная деятельность приносит радость, стабильный материальный доход. Условие для этого – расположение невусов на благоприятном участке тела. Если треугольник расположен на неблагоприятной стороне, человека ждет тяжелый и малооплачиваемый труд, невозможность достигать высоких должностей. Повышается риск получения травмы.

Треугольная фигура, расположенная на плече или ключице, свидетельствует о мнительном характере. Человек в волнении за свою жизнь, работу, реагирует на малейшие жизненные неурядицы. Постоянное недовольство, касающееся происходящего в его жизни. Находятся в поисках лучшей жизни, редко удается найти желаемое.

Расположение треугольника на щеке или лице свидетельствует о ранимой натуре человека. Не рекомендуется заниматься деятельностью, которая требует психоэмоционального напряжения. Предпочитают большую часть времени находиться дома. Встречаются случаи, когда выбирают работу, которую можно выполнять не выходя из дома. Не являются сторонниками заводить новые знакомства. У таких людей мало друзей, редко появляется в общественных местах.

Невусы в виде треугольника, находящееся на ноге или кистях рук, говорят о том, что человек удачлив во всех начинаниях. Предпочитает иметь два — три высших образования, чтобы была возможность пробовать себя в различных сферах деятельности. Такие люди любопытны, путешествуют по странам, изучая культуру и жизнь народов. Не чувствуют боязни к постоянной смене места жительства. Вследствие красивой внешности, пользуются вниманием противоположного пола. Довольствуясь ситуацией, меняют партнером, не стремятся завести собственную семью. Обладают прямолинейным характером, предпочитают говорить правду в глаза.

Родинки в виде треугольника на шее, лице, руке: что означают, что предпринять при увеличении размеров и расположении в местах трения одежды

Родинки (невусы) — это маленькие пигментные пятна на теле человека. Они могут одиноко прятаться на коже или собираться группами в причудливые рисунки. Одна из самых уникальных и интересных форм скопления — треугольник из родинок. Мало кто знает, что расположению телесных отпечатков посвящена целая учебная практика, носящая название морфоскопия. Она связывает астрологическую карту и местоположение природных отметин на теле человека. Согласно учению, родинки — это поцелуи вселенной, которые дарятся человеку при рождении и остаются с ним на всю жизнь.

Морфоскопия: влияние небесных тел

Тело делится на две вертикальные половины: левую и правую. У мужчин правая часть считается благоприятной, отметины на ней несут положительный характер и предвещают удачную судьбу. У женщин же такая вертикаль — левая. Счастливые стороны в морфоскопии отождествляют с Солнцем. По другую сторону Солнца в астрологическом цикле всегда пребывает Луна. Для женщин это правая половина, а у мужчин, соответственно, левая. Луна воздействует не лучшим образом, выставляя напоказ отрицательные качества. Родинки, находящиеся на той или иной стороне, несут в себе энергию сопутствующего небесного тела.

Цвет невуса

В медицине встречаются несколько разновидностей:

  • Чёрные, коричневые. Они образованы путём скопления пигмента на кожном участке и могут становиться светлее или темнее в течение жизни. Такие невусы соответствуют Сатурну. Это планета стабильности, долга, дисциплины.
  • Красноватые. Цвет их колеблется от светло-коричневого до бордового. Их появление вызвано нарушением функционирования сосудов, а представителем является Марс. Планета страсти, желания и напора.
  • Синие, голубые. Скопление пигмента таится глубоко в эпидермальном слое и находится под влиянием Венеры. Символа чувственности и взаимоотношений.

Невус в форме треугольника

Одиночные родинки не несут такого большого смысла, как скопления (три и больше). Именно группируясь, вселенские отпечатки рассказывают о судьбе и личности своего хозяина. Существуют различные комбинации: зигзагообразные, ромбовидные и даже в виде созвездия большой медведицы. Но одна из самых интересных форм скопления — треугольная.

Бытует мнение, что треугольник из родинок увеличивает влияние на судьбу того места, в котором он расположен.

Некоторые приверженцы морфоскопии считают, что такой знак является меткой высшего разума, а направленность вершины характеризует личностные качества:

  • Если вершина фигуры направлена вверх, это всегда означает любознательность.
  • Вершина, направленная вниз — наличие потенциала.
  • Макушка, уходящая в боковую сторону — нерешительность.
  • Три невуса в ряд — предначертанный свыше путь, который трудно изменить.

Треугольник из родинок и влияние месторасположения

Стоит отметить, что все три родинки должны быть одинаковыми по размеру и рельефности.

  • Пятна на левой или правой руке означают нелюдимость и работоспособность.
  • На животе — трудолюбие.
  • На груди — предрасположенность к бизнесу, продажам и переговорам.
  • На шее — одухотворённость.
  • Расположение на ногах напрямую относится к личностным качествам человека.
  • Невусы, украшающие лицо, означают наличие дара оратора и манипулирования людьми.

Однако, от месторасположения зависит и травматичность. Если родинки расположены в месте, часто подверженном бритью или трению одеждой, это может представлять опасность. Поэтому крупное или выпирающее образование с такого места стоит удалить, несмотря на всю магию звёзд и чисел.

Народные приметы

Наши предки уделяли большое значение отметинам на теле. У древних славян было множество примет, связанных с их расположением. Они верили, что родинки приносят большую удачу. Однако крупные родимые пятна расценивались как неблагоприятный знак.

Самые распространённые из древнерусских примет:

  • Крупная родинка над губой считалась знаком кокеток и людей, лёгкого нрава.
  • Скопление на груди — к многобрачию.
  • Родимое пятно у ребёнка — признак того, что мать согрешила в церковный праздник во время беременности.
  • Родинка на правой кисти – к удаче, а на левой – к финансовому благополучию.

Народные поверия всегда интересны, в чём-то наши предки были действительно правы. Наличие крупных образований не всегда является хорошим знаком.

Когда необходимо врачебное вмешательство

Несмотря на таинственность пигментных пятен, некоторые из них опасны для здоровья. Научная медицина давно доказала, что врождённые маленькие родинки не представляют никакой угрозы. Однако, большие и растущие в течение жизни родимые пятна, выпирающие над поверхностью дермы, могут перерасти в злокачественные образования.

Специалисты рекомендуют удалять такие бородавки, чтобы избежать травмирования. Важно помнить, что лечение предполагает только лазерное или скальпельное удаление. Никакие народные методы не помогут справиться с крупными бородавками или нагноением.

Поводом обратить к врачу служат определённые изменения: если невусы воспаляются, начинают чесаться, кровить, гноиться или трескаться. Эти симптомы могут стать ранними предвестниками онкологических заболеваний. Появление большого количества новых родинок также должно подтолкнуть к проведению диагностики, дабы установить причину резкого всплеска пигментации.

Что такое треугольник? (с иллюстрациями)

У треугольника три стороны.

Треугольники - одна из основных фигур, используемых в евклидовой геометрии. Для его изготовления необходимы три элемента. Это

  • Трехсторонний
  • плоская или двухмерная фигура, в которой
  • сумма внутренних углов равна точно 180 градусам.

Есть две общие системы классификации треугольников. Один акцентирует внимание на сторонах и обозначает три типа.

Равносторонний треугольник. Равносторонний означает «равные стороны», а в равностороннем треугольнике все три стороны имеют одинаковую длину. Это означает, что углы также будут одинаковыми - все 60 °, что делает его равносторонним и .

Музыкальный треугольник - это металлический стержень с тремя сторонами.

Равнобедренный треугольник. Равнобедренный означает «равные ноги», и этот тип имеет две стороны равной длины. Это также означает, что два угла, образованные на стыке равных сторон с третьей стороной, равны.

Скаленовый треугольник. Scalene происходит от слова, означающего «неровный», и у этого типа есть три неравные стороны. Как вы могли догадаться, эти три угла также не равны.

Другая схема классификации треугольников подходит к формам с точки зрения измерений внутренних углов.Он тоже обозначает три типа.

Любовный треугольник включает трех человек, попавших в романтическую ситуацию, участники которой предпочли бы, чтобы в нее были вовлечены только два человека.

Острый треугольник. В остром треугольнике наибольший внутренний угол острый - менее 90 °. Значит, все углы острые.

Прямой треугольник. У этого типа есть один прямой угол - угол ровно 90 °. Это означает, что два других угла будут острыми.

Тупой треугольник. Эта форма имеет один тупой внутренний угол.Это опять же означает, что два других угла будут острыми.

Другие треугольники. Слово «Треугольник » также используется для обозначения вещей, которые имеют некоторое сходство с этой формой, либо имеют приблизительную форму, либо имеют три точки, которые каким-то образом связаны.Музыкальный инструмент, называемый треугольником, представляет собой металлический стержень с тремя сторонами, за исключением того, что один угол открыт. Он подвешен на тонкой проволоке, так что может вибрировать при ударе битером. Он используется как в оркестровой, так и в групповой музыке. Так называемый любовный треугольник - это романтическая ситуация, в которой участвуют три человека и обычно подразумевает, что каждый из них предпочел бы двоих.

Геометрия используется для вычисления площади треугольника.

Треугольник также используется для обозначения мест, имеющих более или менее треугольную форму. Бермудский треугольник, область, примерно обозначенная Бермудскими островами, Форт-Лодердейлом и Пуэрто-Рико, является хорошо известной частью планеты, потому что имеет репутацию места необъяснимых исчезновений. Есть ряд Золотых Треугольников, в том числе область Юго-Восточной Азии, известная производством опия, однако золотой треугольник также является равнобедренным треугольником, построенным таким образом, что отношение гипотенузы к основанию равно так называемому золотое сечение , так что мы вернемся к математике.

Что такое Бермудский треугольник? (с иллюстрациями)

Бермудский треугольник или Дьявольский треугольник - это название, данное водной зоне между Бермудскими островами, Майами, Флорида, и Сан-Хуаном, Пуэрто-Рико. В этом пространстве загадочным образом исчезло множество самолетов и кораблей.Загадка началась в 1950 году, когда появилась небольшая статья, в которой рассказывалось о странных исчезновениях кораблей и самолетов в этом районе, и ей было дано название Море Дьявола. В 1964 году Винсент Гаддис окрестил этот район самым известным именем.

Бермудский треугольник расположен у юго-восточного побережья США.S.

Одно из самых известных исчезновений в треугольнике произошло в 1945 году. Рейс 19 представлял собой эскадрилью из пяти военно-морских бомбардировщиков, которые предположительно исчезли во время полета над этим районом. Два самолета, которые намеревались спасти рейс 19, также исчезли и так и не были обнаружены. Военно-морские корабли, такие как USS Cyclops и Marine Sulpher Queen, также бесследно исчезли.

Сан-Хуан, Пуэрто-Рико, - одна из вершин Бермудского треугольника.

Еще одно исчезновение произошло с Дональдом Кроухерстом, который пытался совершить кругосветное путешествие. Большой корабль с рудой также таинственным образом исчез в этом районе всего через три дня в море. В официальном заявлении береговой охраны США говорится, что попытки обысков предпринимались неоднократно, но никаких следов пропавших самолетов или кораблей обнаружено не было.

Тайна Бермудского треугольника, возможно, никогда не будет разгадана.

Популярность этого явления достигла пика в 1974 году с публикацией книги Чарльза Берлитца «Бермудский треугольник.«Примерно в то же время был выпущен фильм с таким же названием. С тех пор было опубликовано множество статей и книг, в которых пытались дать научное объяснение тайне, и некоторые объяснения были более чем правдоподобными.

Участок воды, где произошли исчезновения, известен тропическими штормами.Во многих отчетах того времени утверждается, что корабли и самолеты были потеряны в спокойной воде, но проверенные отчеты о погоде часто не согласуются с этими отчетами. Кроме того, в области воды под треугольником есть большие области извержений газообразного метана. Эти извержения создают области газа, которые неспособны выдержать вес корабля.

Лоуренс Куше, библиотекарь из Университета штата Аризона, провел длительное расследование тайны.Его выводы ставят под сомнение многие исчезновения. Дневники Кроухерста предполагают, что он был склонен к самоубийству, когда плавал вокруг света. Район моря у побережья Японии имеет те же странные магнитные элементы, что и Бермудский треугольник, и там также произошло много исчезновений.

В отчетах об исчезновении Рейса 19 также есть ряд неточностей.Сообщается, что эскадрилья укомплектована опытными пилотами, летящими в безветренную погоду. По сути, полет был тренировкой для студентов, а погода стала ненастной. Последний контакт с самолетами показал, что у них заканчивается топливо. Вероятно, что самолеты разбились, и никто не смог бы выжить в штормовом море.

Несмотря на все достоверные объяснения исчезновений Куше, остается одна загадка: ни один из разбившихся самолетов так и не был обнаружен.Бермудский треугольник - загадка, которую, возможно, никогда не разгадать. Это определенно область, которая вызывает беспокойство у любого, кто путешествует по ней.

Многие из инцидентов, которые вдохновили легенду о Бермудском треугольнике, связаны с сообщениями о пропавших без вести, такими как сообщение Дональда Кроухерста, которые оказались пустыми даже после поисков береговой охраны.

Что такое треугольник. Что они любят?

О том, что такое треугольник, квадрат, куб, нам рассказывает наука геометрии. В современном мире его изучают в школах без исключения. Кроме того, тригонометрия напрямую изучает, что такое треугольник и каковы его свойства. Она подробно исследует все явления, связанные с этими геометрическими фигурами.О том, что такое треугольник, мы поговорим сегодня в нашей статье. Ниже будут описаны их виды, а также некоторые связанные с ними теоремы.

Что такое треугольник? Определение

Это плоский многоугольник. У него три угла, как понятно из его названия. Он также имеет три стороны и три вершины, первая из которых - отрезки, вторая - точки. Зная, чему равны два угла, можно найти третий, взяв сумму первых двух из числа 180.

Что такое треугольники?

Их можно классифицировать по разным критериям.

В первую очередь их делят на острые, тупые и прямоугольные. У первых есть острые углы, то есть те, которые меньше 90 градусов. У тупых углов один из углов тупой, то есть один более 90 градусов, два других острые. К угловым треугольникам тоже относятся равносторонние. В таких треугольниках все стороны и углы равны. Все они равны 60 градусам, это легко вычислить, разделив сумму всех углов (180) на три.

Прямоугольный треугольник

Нельзя не говорить о том, что такое прямоугольный треугольник.

У такой фигуры один угол равен 90 градусам (прямой), то есть две его стороны перпендикулярны. Два других угла острые. Они могут быть равными, тогда будет равнобедренный. Теорема Пифагора связана с прямоугольным треугольником. С его помощью вы можете найти третью сторону, зная первых двух. Согласно этой теореме, если вы добавите квадрат одного катета к квадрату другого, вы можете получить квадрат гипотенузы. Квадрат того же отрезка можно вычислить, вычтя квадрат известного отрезка из квадрата гипотенузы.Говоря о том, что такое треугольник, можно вспомнить и равнобедренный. Это тот, у которого две стороны равны, и два угла также равны.

Что такое катет и гипотенуза?

Катет - это одна из сторон треугольника, образующая угол 90 градусов. Гипотенуза - это оставшаяся сторона, расположенная напротив прямого угла. С него на кошку можно уронить перпендикуляр. Отношение соседнего катета к гипотенузе называется не иначе, как косинусом, а противоположное - синусом.

Египетский треугольник - в чем его особенности?

Он прямоугольный. Его ног три и четыре, а гипотенуза пять. Если вы видели, что катеты этого треугольника равны трем и четырем, можете не сомневаться, что гипотенуза будет равна пяти. Также согласно этому принципу легко определить, что катет будет равен трем, если второй равен четырем, а гипотенуза - пяти. Чтобы доказать это утверждение, мы можем применить теорему Пифагора. Если два катета равны 3 и 4, то 9 + 16 = 25, корень из 25 равен 5, то есть гипотенуза равна 5.Также египетский треугольник называется прямоугольным треугольником, стороны которого равны 6, 8 и 10; 9, 12 и 15 и другие числа с соотношением 3: 4: 5.

Какой еще может быть треугольник?

Также треугольники можно вписывать и описывать. Фигура, вокруг которой описывается круг, называется вписанной, все ее вершины - это точки, лежащие на окружности. Описанный треугольник - это тот, в который вписан круг. Все стороны касаются его в определенных точках.

Какая площадь у треугольника?

Площадь любой фигуры измеряется в квадратных единицах (квадратных метрах, квадратных миллиметрах, квадратных сантиметрах, квадратных дециметрах и т. Д.)) Это значение можно вычислить по-разному, в зависимости от типа треугольника. Площадь любой формы с углами можно найти, умножив ее сторону на перпендикуляр, опущенный на нее из противоположного угла, и разделив эту фигуру на два. Вы также можете найти это значение, умножив две стороны. Затем умножьте это число на синус угла между заданными сторонами и разделите его на два. Зная все стороны треугольника, но не зная его углов, можно найти площадь другим способом.Для этого нужно найти половину периметра. Затем поочередно отнимайте от заданного числа разные стороны и умножайте полученные четыре значения. Затем найдите квадратный корень из полученного числа. Площадь вписанного треугольника можно найти, умножив все стороны и разделив полученное число на радиус круга, который описан вокруг него, умноженный на четыре.

Площадь описанного треугольника и есть изображение: умножьте половину периметра на радиус вписанной в него окружности.Если треугольник равносторонний, то его площадь можно найти следующим образом: возведем сторону в квадрат, полученную цифру умножаем на корень из трех, затем делим это число на четыре. Аналогичным образом мы можем вычислить высоту треугольника, у которого все стороны равны, для этого нужно умножить одну из них на корень из трех, а затем разделить на два.

Теоремы, относящиеся к треугольнику

Основными теоремами, которые связаны с этим рисунком, являются теорема Пифагора, описанная выше, теоремы синуса и косинуса.Второй (синус) состоит в том, что если вы разделите любую сторону на синус противоположного угла, вы можете получить радиус окружности, описанной вокруг нее, умноженный на два. Третий (косинусы) заключается в том, что если произведение квадратов двух сторон вычитается из их произведения, умноженного на два и на косинус угла между ними, то получается третий квадрат стороны.

Треугольник Дали - что это?

Многие, столкнувшись с этой концепцией, сначала думают, что это какое-то определение в геометрии, но это не так.Треугольник Дали - это общее название трех мест, тесно связанных с жизнью известного художника. «Вершинами» его являются дом, в котором жил Сальвадор Дали, замок, который он подарил жене, а также музей сюрреалистических картин.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *